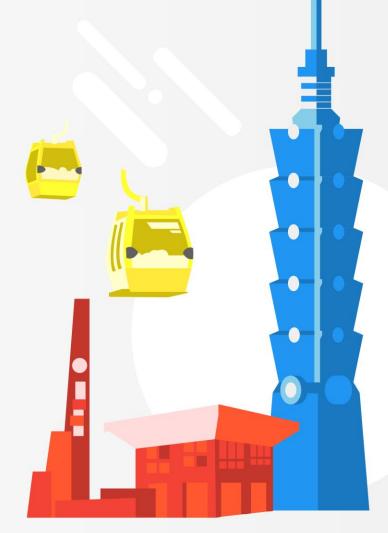


B2F: End-to-End Body-to-Face Motion Generation with Style Reference

Bokyung Jang, Eunho Jung, Yoonsang Lee*
Hanyang University



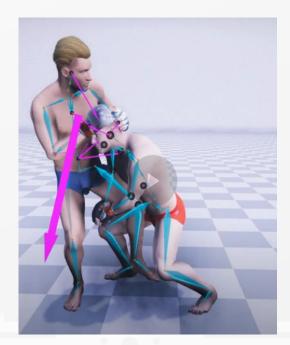
Motivation

Humans perceive **face and body** as an integrated whole.

If a character's facial expressions do not align with its body motions,



Xie et al. 2022

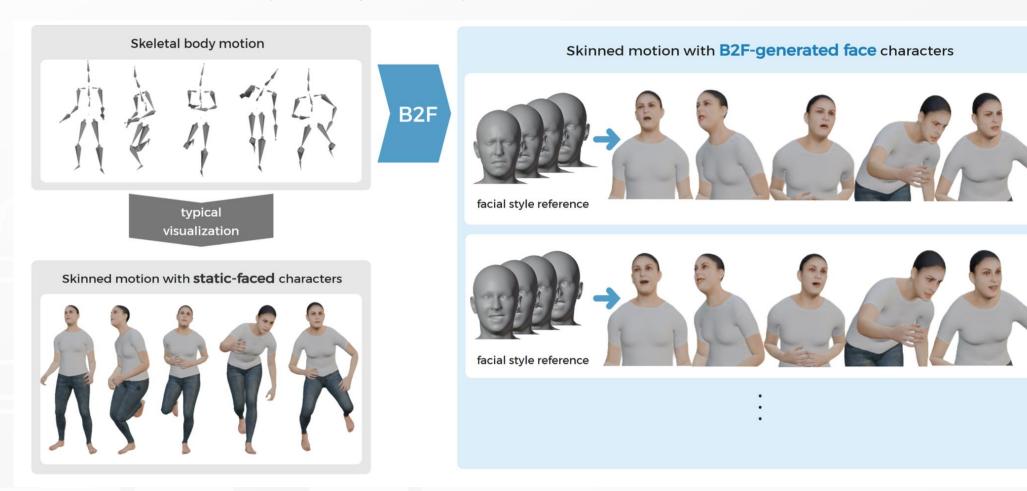


Ling et al. 2020

Could it hinder the observer's perception and understanding?

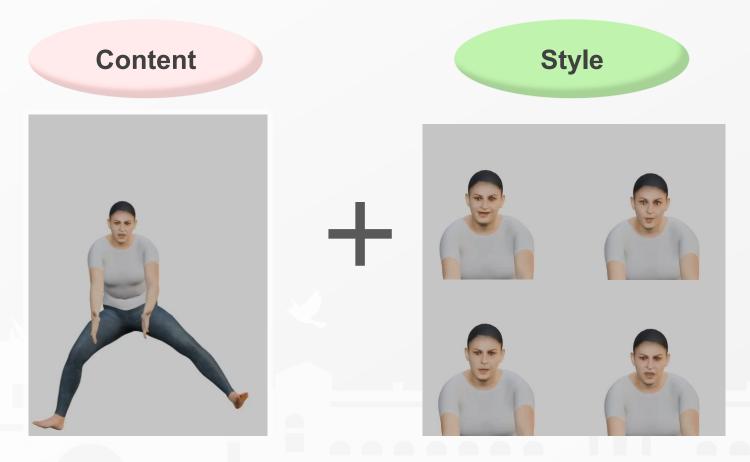
B₂F

- We propose **B2F**, a method that **generates facial motions aligned with body motions**, while allowing style control.
- This improves perception by reducing face—body mismatches and leads to coherent, expressive animation.



Our Approach

We assume that facial motion can be decomposed into **two factors**:

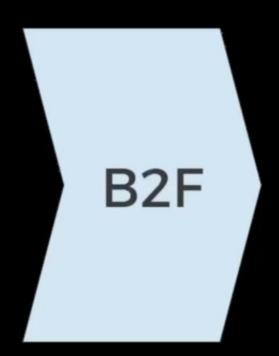


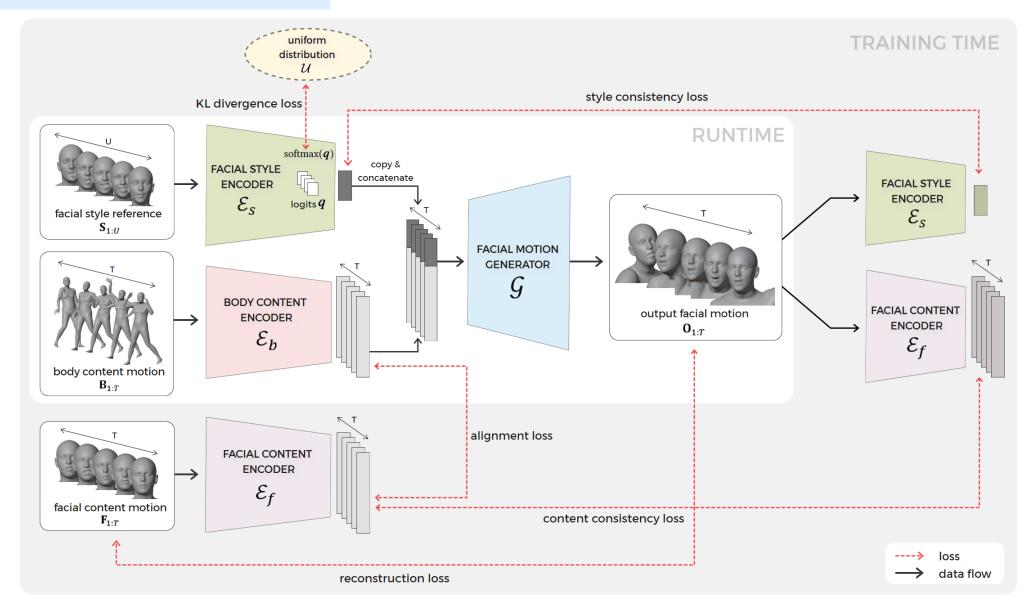
Reflects the context-dependent expressions that naturally accompany body movements

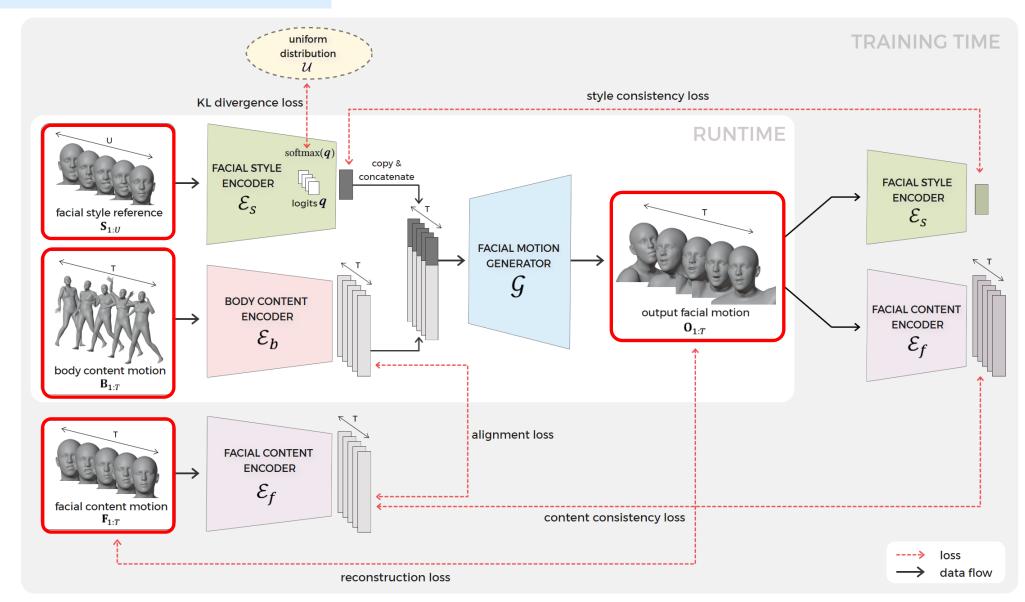
Captures the character's expressive tendency or emotional tone.

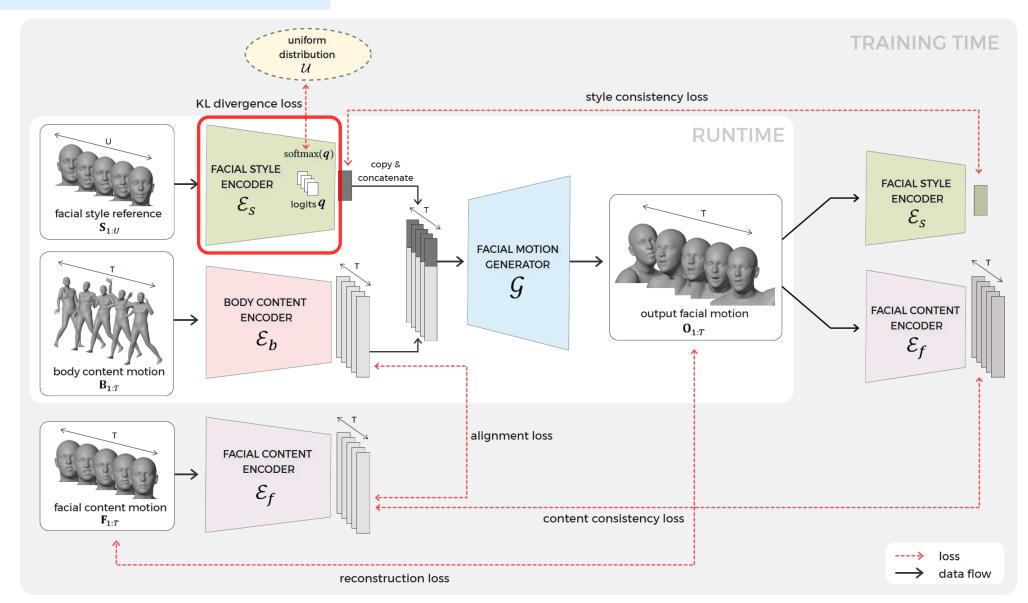
Body Content Motion

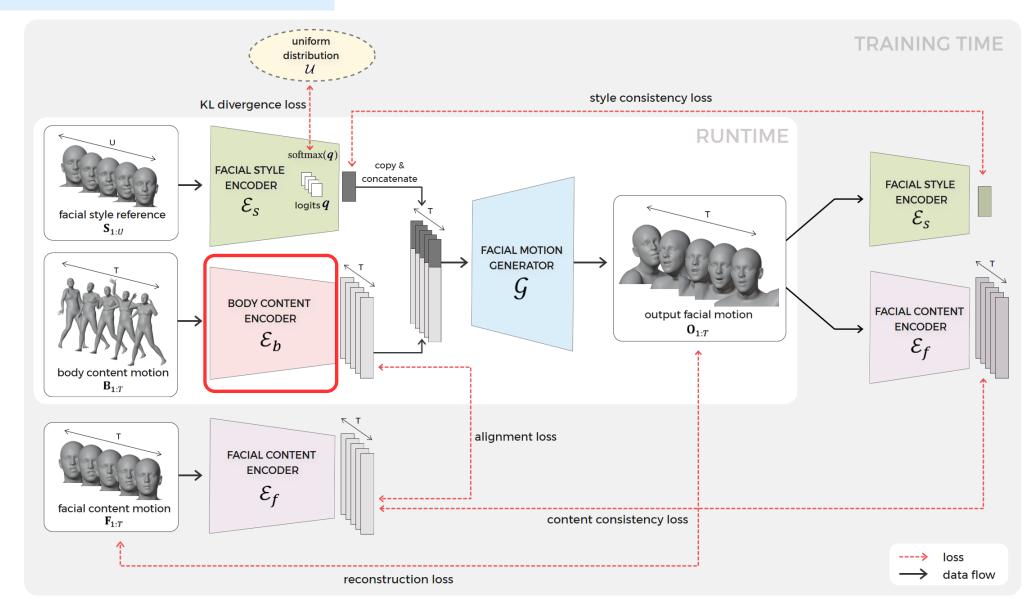
Facial Style Reference

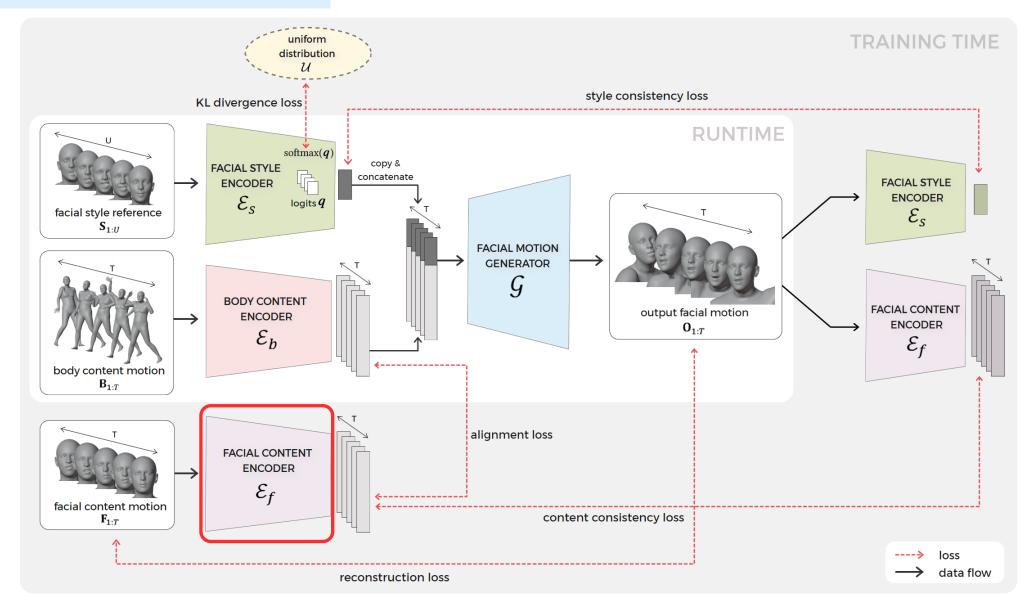


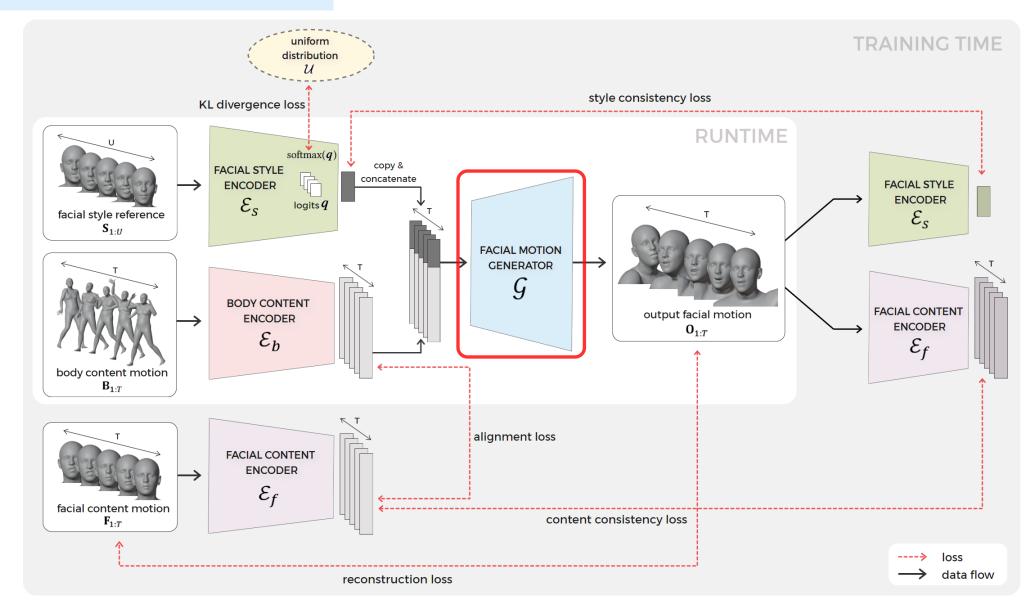


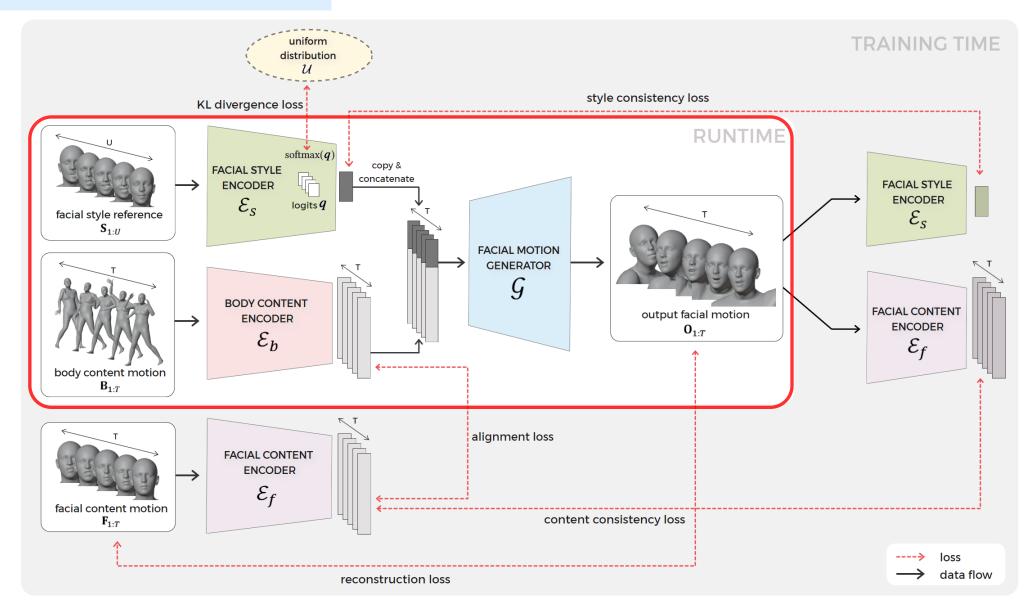




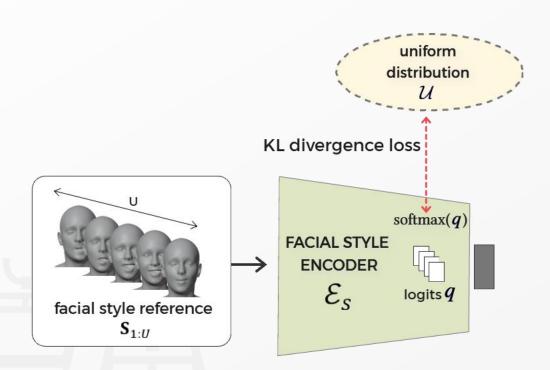






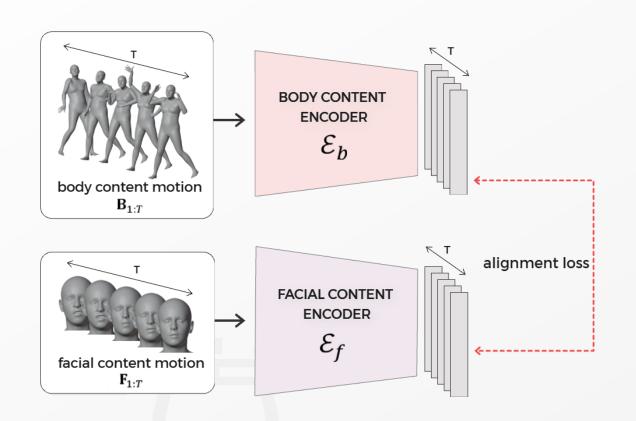


Facial Style Encoder



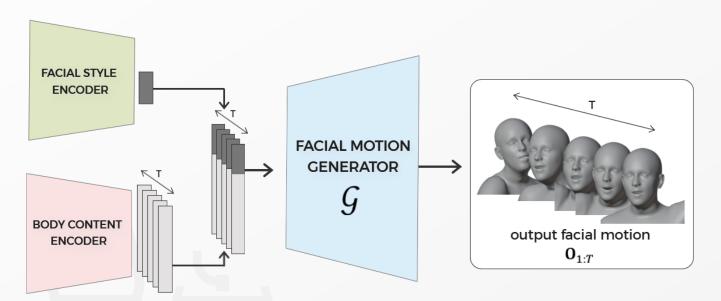
- Extracts a style embedding from a FLAME-based facial motion
- Transformer encoder with Gumbel-Softmax enables continuous and diverse style representation
- Achieves more **consistent and expressive results** than VAE/VQ-VAE

Body & Facial Content Encoder



- Transformer encoder architecture to extract shared content from body and face sequences.
- Trained with **co-temporal inputs** from the same clip to capture **common motion features**.
- Facial Content Encoder → used only during training.

Facial Motion Generator

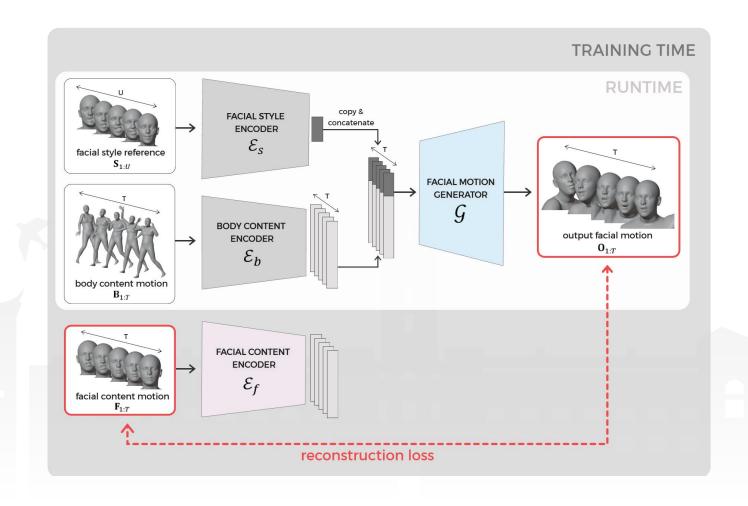


- **Inputs**: style + content embeddings
- Repeated style embedding concatenated with per-frame content embeddings.
- Transformer decoder architecture generates content- and style-aware facial motions

$$\mathcal{L} = \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{align} + \lambda_3 \mathcal{L}_{KL} + \lambda_4 \mathcal{L}_{consi} + \lambda_5 \mathcal{L}_{cross}$$

Reconstruction Loss

MSE loss reconstructs original facial motion from **same-clip** content and style.

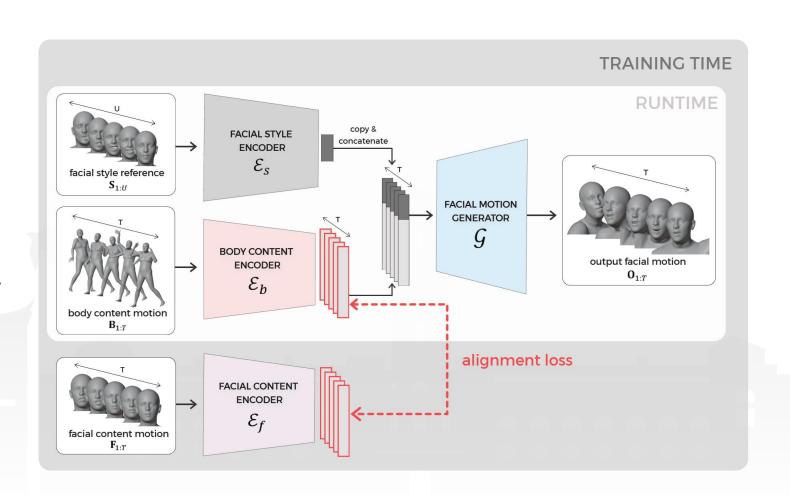


$$\mathcal{L} = \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{align} + \lambda_3 \mathcal{L}_{KL} + \lambda_4 \mathcal{L}_{consi} + \lambda_5 \mathcal{L}_{cross}$$

Alignment Loss

Cosine similarity aligns body and facial content embeddings for consistent content.

Encourages consistent motion representation between the two encoders.

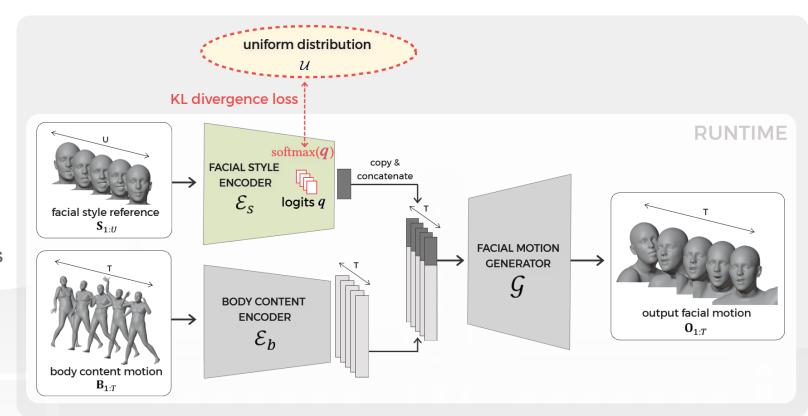


$$\mathcal{L} = \lambda_{1}\mathcal{L}_{recon} + \lambda_{2}\mathcal{L}_{align} + \lambda_{3}\mathcal{L}_{KL} + \lambda_{4}\mathcal{L}_{consi} + \lambda_{5}\mathcal{L}_{cross}$$

KL divergence Loss

Minimizes KL divergence between each categorical distribution and a uniform distribution.

Encourages balanced use of all categories



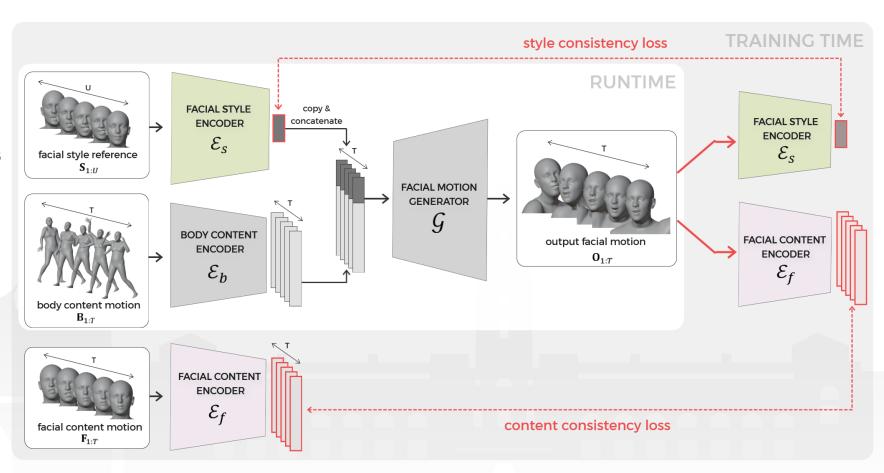
$$\mathcal{L} = \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{align} + \lambda_3 \mathcal{L}_{KL} + \lambda_4 \mathcal{L}_{consi} + \lambda_5 \mathcal{L}_{cross}$$

Consistency Loss

Consist of **Style** and **Content** terms

Compare **re-encoded output** and **original embeddings**

Ensure generated motion reflects original content and style

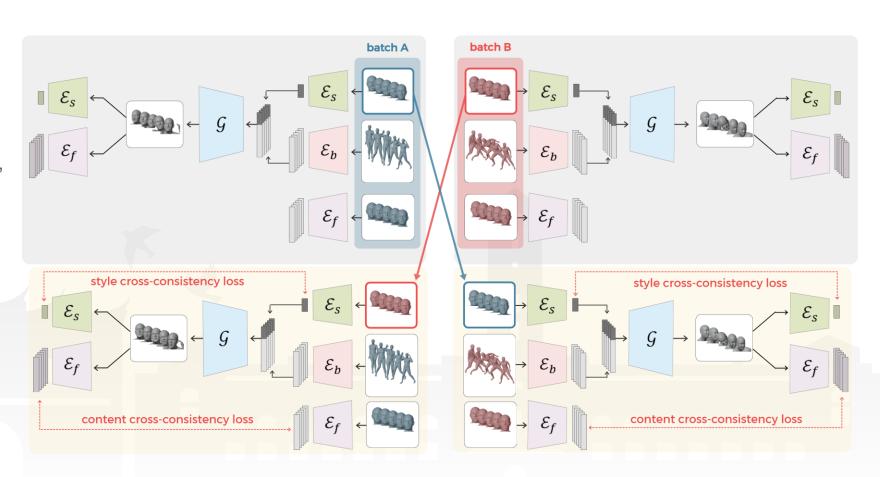


$$\mathcal{L} = \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{align} + \lambda_3 \mathcal{L}_{KL} + \lambda_4 \mathcal{L}_{consi} + \lambda_5 \underline{\mathcal{L}_{cross}}$$

Cross Consistency Loss

Same structure as consistency loss, but uses content and style **from different batches**

Ensures clear content-style disentanglement



Body Content Motion

Facial Style Reference 1

Facial Style Reference 2

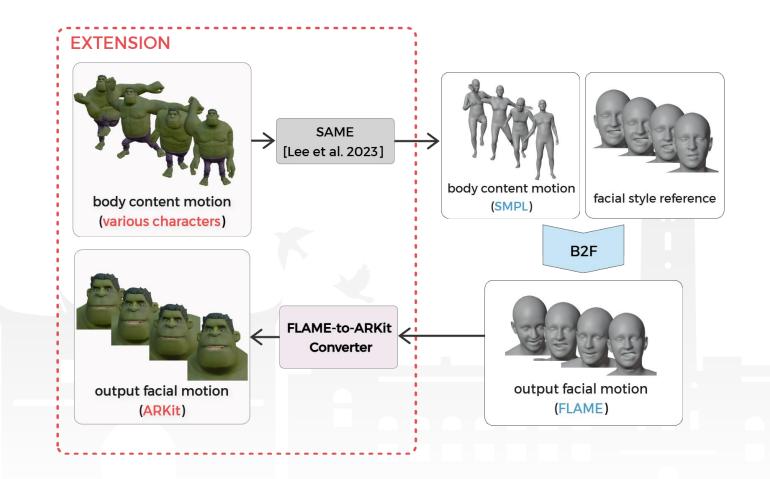
Body Content Motion 1

Body Content Motion 2

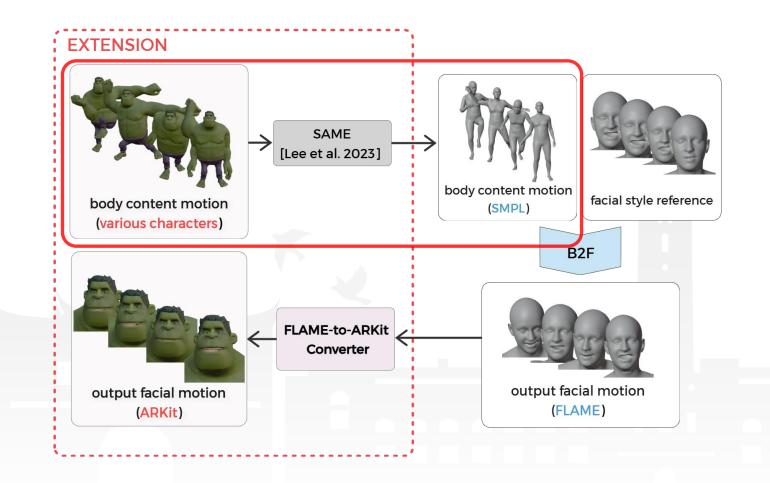
Body Content Motion 3

Facial Style Reference

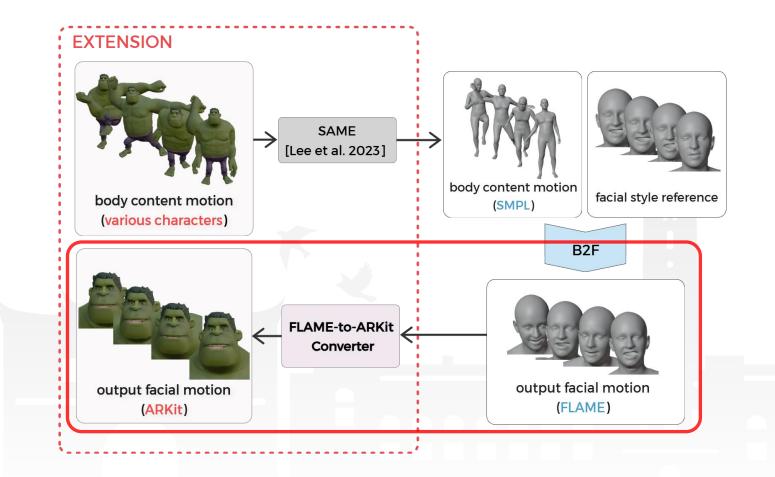
We extend B2F for broader use, enabling it to work regardless of skeleton structure or facial motion format.



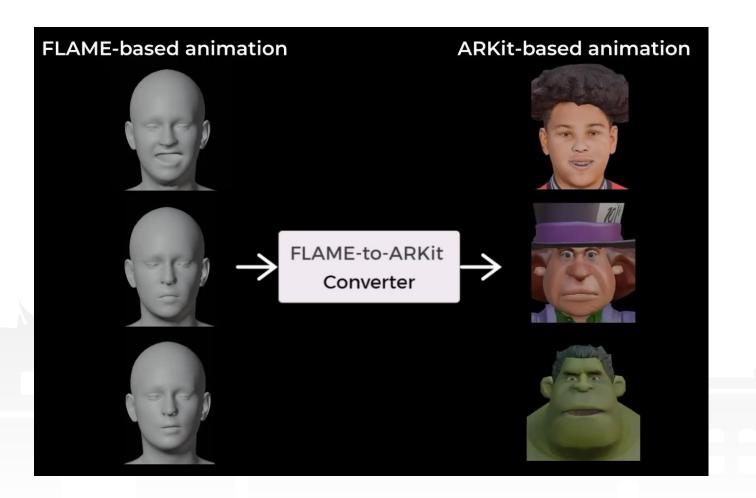
• Motion Retargeting for Input: Use SAME [LKP*23] to map diverse skeleton motions into a unified embedding for B2F input.



FLAME-to-ARKit Converter for Output: Converts FLAME outputs to ARKit blendshapes for practical deployment.



• FLAME-to-ARKit Converter for Output: Converts FLAME outputs to ARKit blendshapes for practical deployment.



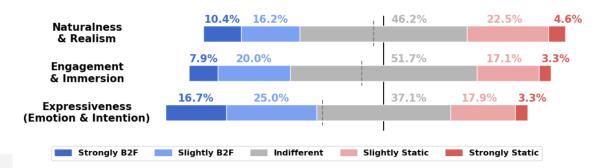
Body Content Motion

Facial Style Reference

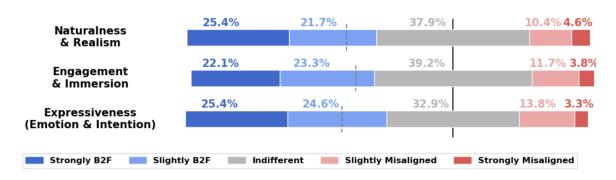
User Studies

Two user studies evaluated how facial motion affects perception in terms of naturalness, engagement, and expressiveness.

User Study 1 (B2F vs. Static Face)



User Study 2 (B2F vs. Misaligned Face)



The experiments confirmed that **B2F improves perceptual quality** in both cases, especially showing a clearer advantage over the misaligned face condition.

• We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

 We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

Ablation Models

w/o \mathcal{L}_{align} w/o \mathcal{L}_{cross} w/o $\mathcal{L}_{consi} & \mathcal{L}_{cross}$

Baseline Models

w/ SMPL Pose Input : Uses SMPL body pose as input instead of body content features.

w/ SAME Pose Input: Uses skeleton-agnostic pose representation (SAME) as input.

B2F-VAE : Uses a **fully continuous latent space** for style encoding.

B2F-VQVAE : Uses a **discretized codebook-based** style representation.

 We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

Ablation Models

w/o \mathcal{L}_{align} w/o \mathcal{L}_{cross} w/o $\mathcal{L}_{consi} \& \mathcal{L}_{cross}$ Metric

(1) ℓ_2 Error

the average I2 error between predicted and ground-truth blendshape weights to assess reconstruction accuracy

(2) Std. Dev. Difference

the average absolute difference in standard deviation across each blendshape dimension over time to assess temporal variation

Baseline Models

w/ SMPL Pose Input : Uses SMPL body pose as input instead of body content features.

w/ SAME Pose Input: Uses skeleton-agnostic pose representation (SAME) as input.

B2F-VAE : Uses a **fully continuous latent space** for style encoding.

B2F-VQVAE : Uses a **discretized codebook-based** style representation.

• We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

_	Model	ℓ_2 Error \downarrow	Std. Dev. Difference ↓
Lowest reconstruction error →	B2F (ours)	0.556	0.309
	w/o $\mathcal{L}_{ ext{align}}$	0.593	0.331
	w/o \mathcal{L}_{cross}	0.591	0.326
	w/o $\mathcal{L}_{ ext{consi}} \& \mathcal{L}_{ ext{cross}}$	0.565	0.297
	w/ SMPL Pose Input	0.618	0.381
	w/ SAME Pose Input	0.673	0.564
	B2F-VAE	0.567	0.321
	B2F-VQVAE	0.570	0.292

 We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

Model	ℓ_2 Error \downarrow	Std. Dev. Differer	nce \place
B2F (ours)	0.556	0.309	
w/o $\mathcal{L}_{ ext{align}}$	0.593	0.331	
w/o \mathcal{L}_{cross}	0.591	0.326	
w/o $\mathcal{L}_{ ext{consi}}$ & $\mathcal{L}_{ ext{cross}}$	0.565	0.297	
w/ SMPL Pose Input	0.618	0.381	
w/ SAME Pose Input	0.673	0.564	lower temporal deviation error than ours
B2F-VAE	0.567	0.321	
B2F-VQVAE	0.570	0.292	

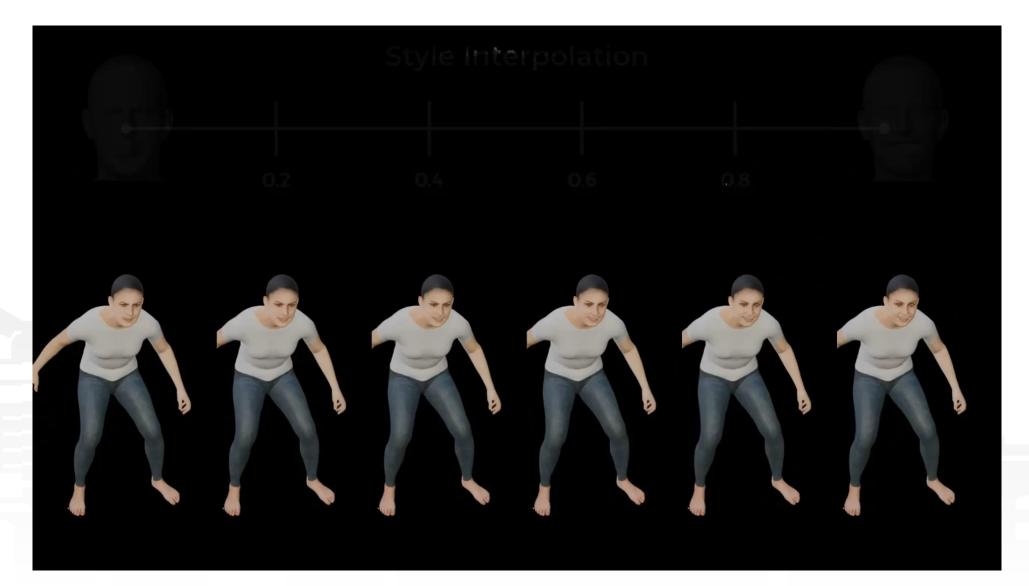
 We conducted a quantitative evaluation using several ablation and baseline models to assess the impact of each component and input setting

Model	ℓ_2 Error \downarrow	Std. Dev. Difference ↓	
B2F (ours)	0.556	0.309	
w/o $\mathcal{L}_{ ext{align}}$	0.593	0.331	
w/o $\mathcal{L}_{ ext{cross}}$	0.591	0.326	. 5
w/o $\mathcal{L}_{ ext{consi}} \& \mathcal{L}_{ ext{cross}}$	0.565	0.291	ess expressive. Better score only for
w/ SMPL Pose Input	0.618	0.501	nis evaluation setting (when style and
w/ SAME Pose Input	0.673	0.564	content come from the same clips)
B2F-VAE	0.567	0.321	but shows unnatural expressions
B2F-VQVAE	0.570	0.292	due to rigid style discretization.

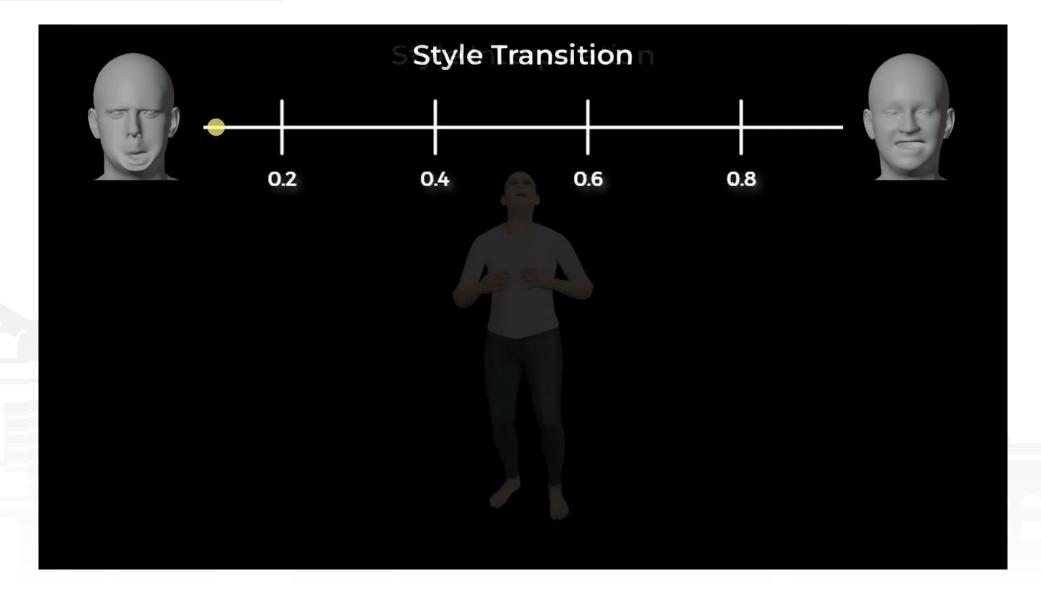
B2F: End-to-End Body-to-Face Motion Generation with Style Reference

Bokyung Jang, Eunho Jung, Yoonsang Lee*
Hanyang University

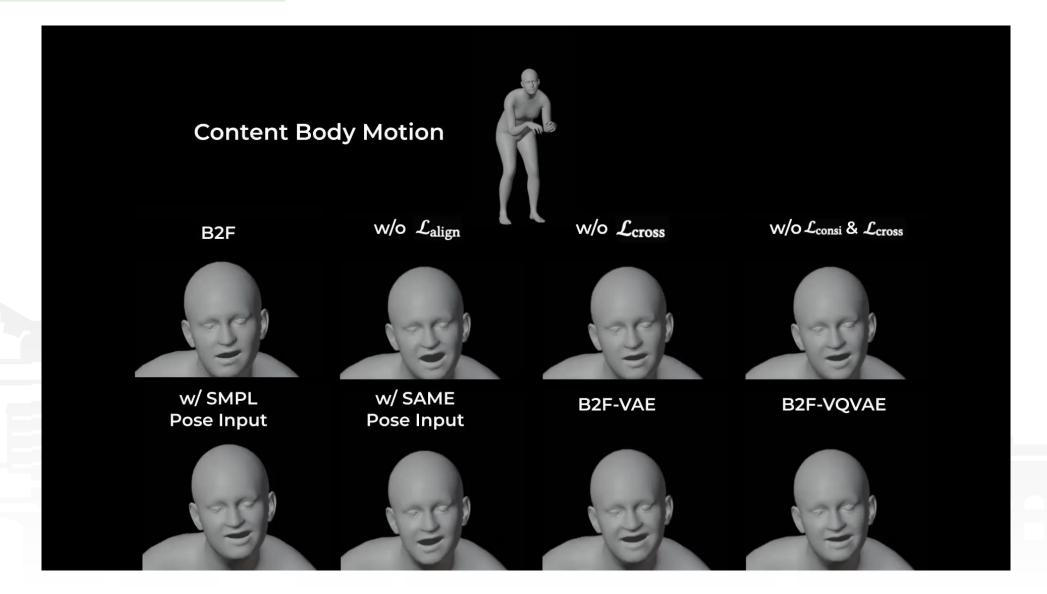
Style Interpolation



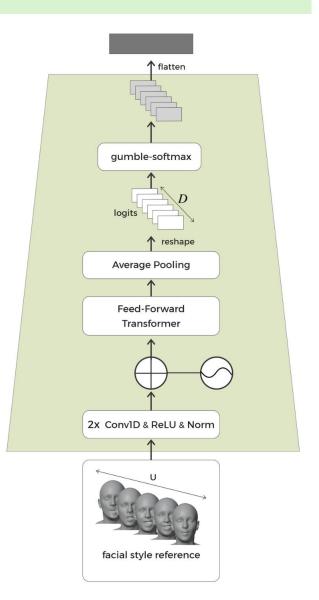
Style Transition



Ablation Study



Gumble-Softmax



- Uses Gumbel-Softmax to sample soft categorical vectors from multiple distributions.
- Each sampled vector represents a different style region, combined into one style embedding.
- Overcomes VAE's blurry styles and VQ-VAE's unstable training, keeping styles clear, diverse, and stable.